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Problem niemieckich czolgéw (PNC) (ang. German tank
problem) ma ciekawe tlo historyczne. Jest to takze zaj-
mujacy problem statystycznej estymacji nadajacy sie na
zajecia w szkole. Celem jest estymacja liczby czolgow
numerowanych kolejnymi numerami serii na podstawie
losowej probki. W tym artykule wprowadzamy zarys
bayesowskiego podej$cia do PNC . Rozwigzanie przypi-
suje prawdopodobienstwo wystgpienia kazdej mozliwej
liczby czolgdw, co pozwala na iloSciowa ocene niepewno-
$ci estymacji (tj. $redniej, wariancji itd. - przyp. ttum.).
Daje to takze mozliwo$¢ wprowadzenia do rachunku
wczesniejszej wiedzy lub przekonania o liczbie czolgdw.
Podamy tu odpowiednie przyktady. Na zakonczenie do-
konamy przegladu podobnych zagadnien.

Tto historyczne

W celu sformutowania strategii wojskowej w czasie II
wojny $wiatowej (1939-1945), Alianci starali si¢ oceni¢
tempo produkcji réznych typédw sprzetu wojskowego
wroga (czolgi, opony, rakiety itd.) Zwykle metody oceny
produkgji zbrojeniowej, wlaczajac w to ekstrapolacje da-
nych o przedwojennej produkcji, zrodta wywiadowcze
czy tez przestuchania jenncow wojennych, byly w wigkszo-
$ci przypadkow niewiarygodne lub sprzeczne. W 1943
roku amerykanskie i angielskie agencje wywiadu ekono-
micznego wykorzystaly niemiecka praktyke, stosowana
przy produkeji sprzetu, do statystycznej oceny produkeji
uzbrojenia w Niemczech. Ot6z niemieccy producenci
oznaczali wyprodukowany sprzet numerem seryjnym,
a takze kodem zawierajacym date i miejsce produkgji.
Mialo to utatwia¢ zarzadzanie cze$ciami zamiennymi
oraz znajdowanie producenta wadliwego sprzetu czy tez
cze$ci zamiennych, ktéry mogtby dokona¢ kontroli jako-
$ci. Jednoczesnie te liczby i kody na zdobytym sprzecie
nieprzyjaciela dawaly Aliantom informacje o produkeji
uzbrojenia w III Rzeszy.
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W celu oszacowania tempa produkeji czolgow,
Alianci zbierali numery seryjne znajdujace si¢ na podwo-
ziach, silnikach, skrzyniach biegéw i gasienicach zdo-
bycznych czolgéw, a takie przegladali zdobyte doku-
menty'. Mimo, Ze nie posiadano wyczerpujacych danych,
kolejne numery sprzetu i regularnosci w kodach umozli-
wily Aliantom estymacje produkgji czolgéw niemieckich.
Powojenne badania wykazaly, ze analiza numeréw seryj-
nych dafa bardziej dokladne oceny od zawyzonych esty-
mat uzyskanych konwencjonalnymi metodami analizy
(tab. 1)?. Zobacz artykut Richarda Rugglesa i Henry’iego
Brodie'go [44], opisujacy szczegdtowo historie analizy
numerdw seryjnych, ktdrej uzyto do oceny niemieckiej
produkcji broni w czasie II wojny swiatowej.

PNC

Uproszczenie historycznego kontekstu estymacji produk-
cji czolgdw na podstawie analizy numeréw seryjnych
[44] bylo motywem do sformutowania problemu w po-
staci dogodnej dla dyskusji o PNC w publikacji [21].

Sformulowanie problemu. W czasie II wojny $§wiatowej
armia IIT Rzeszy miafa na stanie n czotgdw. Kazdy czolg
miat unikatowy numer seryjny ze zbioru liczb {1,...,n}.
Jako Alianci nie znamy n, ale zdobyli§my probke k wra-
zych (wrogich - przyp. red.) czolgéw (oczywiscie jest
to losowanie bezzwrotne), z ktérych kazdy mial swoj
numer seryjny z uporzadkowanego zbioru {sy, ..., sg}.

S1 S1 Sk

1. Na przyklad zdobyte dokumenty ze sktadéw cze$ci zamiennych
do czolgdéw zawieraty listy numeréw seryjnych podwozi i silnikéw
zreperowanych czolgéw, a dokumenty ze sztabéw dywizji zawieraty
numery seryjne czolgéw danej jednostki.

2. Na przyktad skrzynie biegéw mialy wybite numery seryjne jednym
ciggiem. Numery podwozi natomiast byly rozbite na bloki z prze-
rwami miedzy nimi. Pozwalato to odrézni¢ blok opisujacy model
i typ od bloku z numerem seryjnym.
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Zakladajac, ze prawdopodobienstwo zdobycia kazdego
czolgu jest takie samo, a n jest nieznane, naszym celem
jest estymacja n na podstawie danych {s;,..., sk }.

W roku 1942 Alan Turing i Andrew Gleason, sie-
dzac w zattoczonej restauracji w Waszyngtonie, dyskuto-
wali o pewnym wariancie PNC, a mianowicie: jak oce-
ni¢ liczbe taksowek (stynnych ang. yellow cabs - przyp.
tlum.) w miescie na podstawie zaobserwowanych loso-
wych numeréw przejezdzajacych taksowek [13, 24]. Na-
wet dzis, ze wzgledu na ciekawe tfo historyczne, jest to
ciagle interesujacym tematem rozmowy przy stole i moze
postuzy¢ jako intelektualnie ciekawy, intrygujacy i za-
bawny problem ilustrujacy zagadnienia kombinatoryki
i teorii estymacji podczas zaje¢ szkolnych [3, 15, 27, 33].

Tab. 1. Miesieczna produkcja czotgéw niemieckich [44]

miesigc estymaty dane
; } niemieckie
tradycyjne oceny analiza
angielskiego numerow
i amerykanskiego wywiadu  seryjnych
czerwiec 1942 1000 169 122
lipiec 1942 1550 244 271
sierpien 1942 1550 327 342

Szacowanie niepewnosci oceny. Kazda estymacja li-
czebnosci czolgéw n na podstawie danych {s;,..., s}
jest obarczona niepewno$cia, gdyz nie zdobylismy
(zapewne!) wszystkich czolgéw (tzn. prawdopodob-
nie k # n). Znalezienie rozrzutu (btedu) estymacji jest
wazne, gdyz na podstawie estymat podejmuje si¢ istotne
decyzje wojskowe.

Nasz wktad. W niniejszym dydaktycznym artykule wpro-
wadzamy zarys bayesowskiego podejscia do PNC, ktd-
rego rozwigzanie okresla prawdopodobienstwo kazdej
mozliwej liczby czolgéw, co pozwala na ilo$ciowa oceng
niepewnosci estymacji. Daje to takze mozliwo$¢ wprowa-
dzania do obliczen wczesniejszej wiedzy lub przekonania
o liczbie czolgow.

Przeglad wczesniejszych prac nad PNC

Whioskowanie czestosciowe (ang. frequentist approach).
Kim Border [7] nazywa PNC ,,przedziwnym przypad-
kiem” estymowania za pomocg wnioskowania czestoscio-
wego. Zasada najwiekszej wiarygodnosci estymuje liczbe
czolgdw n jako maksymalny numer seryjny wérdd k zdo-

,,,,,

Jest to estymator obcigzony, gdyz na pewno m¥) < n.
Leo Goodman [21, 22] wyprowadzit nieobcigzony esty-

mator o najmniejszej wariancji liczby czotgow

*x)
ﬂ=m<k>+(mT-1). (1)

Aby wyrobi¢ sobie intuicje co do wzoru (1) zauwazmy, ze
A musi by¢ wieksze od lub réwne m (%), a jedli rozwazymy
duze (lub mate) odstepy pomiedzy numerami seryjnymi
(s15- - .,k ), wlaczajac w to odstep pomiedzy zerem a naj-
mniejszym numerem, to n jest zapewne duzo wigksze
(lub nie) od m¥), Estymator n ze wzoru (1) wskazuje,
o ile n powinno by¢ wicksze od m*) w zaleznosci od
obserwowanych odstepow; m(¥) /k — 1 to éredni odstep
miedzy numerami seryjnymi. Goodman [21] takze wy-
prowadzil wzér na dwustronny (1 — a) przedziat ufnoéci
m®) < n < x, gdzie x to najwigksza liczba calkowita
spetniajaca (m®) — 1) /(x) > a (oznaczenie (n); dla
malejacej silni zdefiniowano w [5]).

Zastosowania w dydaktyce. Julian Champkin [23] pod-
kresla, ze uzycie statystyki do estymacji niemieckiej pro-
dukcji czolgéw w czasie II wojny $wiatowe;j to byl ,wielki
moment dla statystyki”. Roger Johnson [27] podaje i oce-
nia wiele intuicyjnie jasnych punktowych estymatoréw
liczby czolgéw. Richard Schaeffer i in. [45] proponuja
doswiadczalne oszacowanie przez uczniéw liczby ponu-
merowanych zetondw w worku poprzez wylosowanie
kilku z nich i zanotowanie ich numeréw jako model
dla PNC. Arthur Berg [3] organizuje w klasie konkurs
na znalezienie najlepszego estymatora liczby ludnosci
w miescie na podstawie losowej probki. George Clark
iin. [10] badajg uzycie symulacji zdobywania wrazych
czolgoéw i regresji liniowej do wykrycia estymatora ze
wzoru (1).

Podejscie bayesowskie. Blisko zwigzane z naszymi dy-
daktycznymi badaniami bayesowskiego podejscia do

PNC sa prace opublikowane przez innych badaczy. Harry
Roberts [41], Michael Hoele i Leonard Held [25], Wol-
fgang Von der Linden, Volker Dose, Udo Von Toussa-
int [49], Simona Cocco, Remi Monasson, Francesco Za-
mponi [11] podejmuja si¢ bayesowskiej analizy PNCiwy-
prowadzaja wzor analityczny na $rednig i wariancje dla
rozktadu prawdopodobienistwa a posteriori liczby czot-
gow w przypadku, gdy rozklad prawdopodobienstwa
a priori jest plaski. Mark Andrews [1] daje zarys podej-
$cia bayesowskiego do PNC na swoim blogu, gdzie takze

znajduje si¢ program napisany w jezyku programowania

R (stluzacym do obliczen statystycznych i wizualizacji

danych - przyp. red.). William Rosenberg i John Deely
[43] daja zarys empirycznego podejscia dla estymacji

liczby koni na wyscigach na podstawie probki numerdw
kilku koni (funkcja wiarygodnosci jest rOwnowazna tej

dla PNC). Arthur Berg i Naur Hawila [4] postuguja si¢

wnioskowaniem bayesowskim w podobnym problemie

taksowek.

Warianty i uogdélnienia problemu. Goodman [21, 22]
oraz Clark, Gonye i Miller [10] rozwazajg wariant PNC,
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w ktérym poczatkowy numer seryjny jest nieznany;
innymi slowy n czolgéw jest znakowane numerami
{b+1,...
uogdlniajg problem do sytuacji, gdy numery seryjne po-
chodza z ciaglego zbioru liczb, a nawet gdy te numery sa

,n+ b}, ale b oraz n sg nieznane. Lee i Miller

wybrane z kuli lub hiperszescianu w przestrzeni dwu lub
wiecej wymiarowe;j.

Przeglad bayesowskiego podejscia do PNC

Z bayesowskiego punktu widzenia [6, 15, 46] traktu-
jemy (nieznana) liczbe catkowitg czolgdéw jako dyskretna
zmienng losowa N, aby modelowa¢ stan naszej niepew-

s = (k)

r[(N:n|S(k):s(k)):

S1 S2

aliancka proébka zbioru
niemieckich czotgéw

n($® =s®) |N=n)=

nosci. Rozklad prawdopodobienstwa N daje nam praw-
dopodobienstwo dla kazdej mozliwej liczby czotgow n.
To prawdopodobienstwo jest miarg naszej wiary, by¢
moze skojarzonej z jaka$ uprzednia wiedza, ze ta liczba
wynosi n [20]. Rozklad prawdopodobienstwa N opi-
suje nasza niepewnos¢. Zaobserwowane numery seryjne
(st>---
wiec rozklad prawdopodobienstwa N zmienia sig, kiedy

, Sk ) zawierajg informacje o liczebie czolgow. Tak
wezmiemy pod uwage dane pomiarowe (sg, . .., S ). Zna-
czy to, ze N ma rozklad prawdopodobienstwa przed po-
miarem (a priori) i po pomiarze (a posteriori).

dwa sformutowania prawdopodobienstwa warunkowego

A{(s®)=5®) 0 (N=n))
2(S =50y
(W =5®) n (N=n)]
n(N=n)

(84 =)y A (N = n)

twierdzenie Bayesa

wiarygodnos§c a priori

zbidr niemieckich
czolgow

N=n

n(N=n|S®k) =5k =

a posteriori

(8K =5k |[N=n) n(N=n)
(k) =5 (k)

prawdopodobiefistwo obserwowanych danych

J

Rys. . Zastosowanie twierdzenia Bayesa do PNC. Diagram Eulera [32, 37] przedstawia dwie konfiguracje () = s(K) i N = 1 za pomoca kék. Powierzchnia
kazdego kota jest proporcjonalna do prawdopodobienstwa konfiguracji, a powierzchnia przeciecia — do jednoczesnego wystapienia obu konfiguracji
(S(k ) =5k ) N (N = n). Diagram Eulera ilustruje dwie konfiguracje jako przecinajace sie wzgledne prawdopodobienistwa, co implikuje twierdzenie

Bayesa [30].

Oto trzy elementy podejscia bayesowskiego do pro-
blemu PNC:

1) rozklad prawdopodobienstwa a priori N uwzglednia-
jacy naszg wiedze lub przekonanie o wartosci n przed
uzyskaniem probki numeréw seryjnych,

2) dane, czyli prébka numerdéw seryjnych (sy,...,s)
traktowanych jako wynik losowania zmiennych loso-
wych (81, ..., Sk) przy zatozeniu, ze wybor numeréw
jest czysto stochastyczny (losowy),

3) wiarygodno$¢ wyrazajaca prawdopodobienstwo ob-
serwowanych danych (Si,...,Sx) = (s1,...,s¢) dla
kazdej wartosci N = n, zaleznie od przyjetego staty-
stycznego modelu przechwytywania czolgow.

Wynikiem baysowskiego podejscia do problemu
PNC jest rozktad prawdopodobienstwa a posteriori na

podstawie danych (s, ...,sx). Rozktad prawdopodo-
bienistwa a posteriori mozna uwaza¢ za aktualizacje roz-
ktadu a priori w $wietle nowych danych (rys. 1). Roz-
ktad prawdopodobienstwa a posteriori dla N przypi-
suje kazdej liczbie czolgéw n prawdopodobienstwo be-
dace kompromisem miedzy wiarygodnos$cig (odwotu-
jaca si¢ do modelu pozyskiwania zdobycznych czolgow
i obserwowanych danych (sy, ..., sx) oraz hipotezy, ze
liczba czolgéw wynosi 1), a rozkladem prawdopodo-
bienstwa a priori N, ktére wynika z naszego przeko-
nania o wartosci n przed uzyskaniem probki numerdéw
,sk) [46]. Rozktad prawdopodobien-
stwa a posteriori jest wyjsciowym wynikiem dla dalszej
analizy i obrazuje, jak rozrzucone sg prawdopodobien-
stwa w N. Mozemy uzyska¢ sumaryczny wynik ana-

lizy podajac np. mediane i maly zbidr liczb, dla kto-

seryjnych (si,...
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rych prawdopodobienistwo jest najwigksze, czyli wiary-
godny zbidr, w ktérym zapewne znajduje sie rzeczywista
liczba czotgéw. Dalej, na podstawie rozktadu a poste-
riori mozemy odpowiedzie¢ na pytanie : jakie jest praw-
dopodobienstwo, ze n bedzie wicksze od pewnej pro-
gowej wielkosci n’, ktéra mogloby zmieni¢ wojskowa
strategie.

Tab. 2. Lista parametréw/zmiennych

parametry/zmienne € opis

n Ny  liczba czolgow

k Nso  liczba zdobytych czolgow

Si Nso  numer seryjny i-tego czotgu

s(6) Nio wektor numerdw seryjnych k
zdobycznych czolgow

m (k) Nso  maksymalny numer seryjny

wsrdd k zdobycznych czotgow

Bayesowskie podejscie do PNC

Teraz zajmiemy si¢ szczegdtami podejscia bayesowskiego
do PNCi zilustrujemy to przyktadem (uzyte dalej sym-
bole podane sa w tab. 2). Uzywamy duzych liter dla
zmiennych losowych a matych - dla ich konkretnych
realizacji. Uzywamy funkcji charakterystycznej zwigza-
nej ze zbiorem A:

1 x€eA,

IA(X):{O xéA (2)

Rozklad prawdopodobienstwa a priori. Tworzymy
rozktad prawdopodobienstwa a priori, bedacy kombi-
nacja naszych subiektywnych ocen i/lub obiektywnej
weczeéniejszej wiedzy o 7, priori(N = 1) przed uzyska-
niem prébki numerdw seryjnych (sy,. .., sx). Rozktad
prawdopodobienstwa a priori N, ktéry postulujemy, za-
lezy od okoliczno$ci. Jesli nie mamy zadnej informacji
a priori o liczbie czolgédw, to mozemy przyja¢ zasade
niewyrdzniana zadnych parametréw i uzy¢ rozmytego
rozktadu a priori np. rozktadu ptaskiego. W przeciwnym
wypadku, kiedy mamy zgrubne pojecie o liczbie czolgow
z innych zrédet lub analiz, mozemy opisa¢ to rozktadem
zawierajacym wiecej informacji, np. rozktadem skoncen-
trowanym woko! naszej najlepszej uprzedniej estymacji.
Zgodnie z definicja rozmyte rozklady zawierajg wieksza
nieoznaczono$¢, mierzong np. entropig [35]. (We wspot-
czesnej statystyce, w sytuacji, gdy brakuje nam informacji
o danym parametrze, wybieramy rozklad o najwiekszej
entropii informacyjnej Shannona; w rozwazanym przy-
padku jest to rozklad ptaski [46] - przyp. thum.)

Jesli teraz my$limy o rozkladzie prawdopodobien-
stwa a posteriori, ktéry balansuje miedzy rozktadem
a priori a wiarygodno$cia (wykorzystujaca dane), to roz-
kiad a priori, niosacy wigcej informacji niz rozktad roz-
myty, bedzie mial wiekszy wplyw na rozklad a poste-

riori niz rozklad rozmyty, ktéry ,,pozwala danym mo-
wi¢ samodzielnie” [15]. Zasadniczo, kiedy liczba zdo-
bycznych czolgéw k rosnie, to spodziewamy sie, ze roz-
kiad a priori bedzie mial coraz mniejszy wplyw na roz-
Ktad a posteriori [15], jako ze dane ,,zdominujg” rozklad
a priori.

Dane, generowanie danych i funkcja wiarygodnosci

Dane. Dane, ktérymi dysponujemy w PNC to wektor

s =(S15...55) 3)
numerdéw seryjnych wybitych na k zdobycznych czot-
gach. Dane te traktujemy jako realizacje wektora roz-
kladéw losowych S0 = (S;,...,8). W tym miej-
scu zakladamy, Ze kolejnos¢ pojmanych czolgéw ma
znaczenie.

Proces generowania danych. Stochastyczne generowa-
nie danych polega na kolejnym, bezzwrotnym zdoby-
waniu k czolgédw ze zbioru n czolgdw, a nastepnie za-
pisywaniu ich numerdéw do (sy,. .., s ). Zaktadamy, ze
w kazdym kroku dowolny czolg ma takie samo praw-
dopodobienstwo bycia zdobytym. Z matematycznego
punku widzenia to jest losowanie bezzwrotne k liczb

,n}.

Funkcja wiarygodnosci. Funkcja wiarygodnosci daje
prawdopodobienstwo obserwacji danych (S;,...,S¢) =
(S15--.>Sk) przy zalozeniu, ze liczba czolgéw N = n.

catkowitych z rozktadu ptaskiego ze zbioru {1,...

Kazdy wynik s*) w przestrzeni prébek fo) jest tak
samo prawdopodobny, gdzie
lek) ={(st,..»s)e:s;€{1,...,n}

dla wszystkich i € {1,...,k}}, (4)

a zapis (). oznacza, ze elementy wektora (+--) sg rézne.
Liczba wynikéw |Q.,(1k)| w przestrzeni probek, to liczba
réznych uporzadkowan k unikatowych liczb ze zbioru
{1,...,n} dana wzorem na malejacg silnie

n!

(Mir=n(n-1)(n-k+1)= m

©)
W czasie generowania danych prawdopodobienstwo za-
obserwowania S() = s(¥) przy zatozeniu, ze rozktad
liczby czolgdéw N = n jest plaski

1
ﬂwiarygodnos’c’(s(k) = S(k) | N-= n) = Q) (S(k))

(n)x
(6)

Interpretacja. Wiarygodnos$¢ dana jest wzorem, z kté-
rego wynika, jak mocne jest poparcie dla naszej wiedzy
wynikajacej z analizy numeréw seryjnych k zdobycznych
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czotgéw w s(F) w poréwnaniu z naszym probabilistycz-
nym modelem zdobywania wrazych czolgéw, przy hipo-
tezie, ze liczba czolgéw to n [46]. Traktujemy wyraze-
nie ﬂwiarygodnos'é(s(k) = s minN = n) jako funkcje n,
gdyz mamy tylko do dyspozycji dane s(¥), a nie #.

Wiarygodnos¢ jako sekwencja zdarzen. Mozemy wypro-
wadzi¢ wzdr (6) w inny sposob. Rozwazmy ciag zdarzen
S1=51,8 =52,...,Sk = sx. Prawdopodobienstwo wy-
stapienia danego numeru na zdobytym czolgu, biorac
pod uwage liczbe czolgéw i numery seryjne uprzednio

zdobytych czolgéw, wynika z rozkladu plaskiego

77(81':51'|N:7’l,s1=$1,...

1

= I NS Si_ i)> 7
n—i+1 {1, st :1}(5) ()

,Sic1 = Si-1)

skoro mamy do dyspozycji n — (i — 1) czolgéw do loso-
wego wybrania z rozkladu plaskiego. Z reguly mnoze-
nia niezaleznych prawdopodobienstw [29] sumaryczne
prawdopodobienstwo to

ﬂwiarygodnos’c’(sl =515 Sk = Sk | N = 71)

k
:Hﬂ(Si:5i|N:n, 81251,...,81‘_1:51‘_1), (8)
i=1
co daje wzor (6) po wykorzystaniu wlasnoéci funkcji
charakterystycznej.

Funkcja wiarygodnosci w zalezno$ci od maksymalnego
obserwowanego numeru seryjnego. Przekonamy sie tu,

»Sk) PO-
daja informacje o liczbie czolgéw N: dlugos¢ préobki k

ze tylko dwie niezalezne cechy danych (si,...

oraz obserwowany maksymalny numer seryjny

= max s;. 9)

Tak wiec szukamy tu innej funkcji wiarygodnosci, tj.
prawdopodobienstwa 7yiarygodnose (M (k) m) |
N = n) zaobserwowania maksymalnego numeru se-
ryjnego m®) dla zadanej liczby N = n. Kazdy wy-
nik s(k) e ij‘) jest tak samo prawdopodobny, wiec
ﬂwiarygodnos’c’(M(k) =m® | N =n) jest utamkiem prze-
strzeni prébek Qﬁk), w ktdrej maksymalny numer se-
ryjny to m(¥). Aby obliczy¢ liczbe wynikow s(¥) e Qﬁk),
gdzie maksymalny numer seryjny to m(¥), rozwazmy
takg sytuacje, ze jeden z k zdobycznych czotgéw ma nu-
mer seryjny m®), a pozostate k — 1 majg numery ze
zbioru {1,...,m® — 1}, Dla kazdej z k mozliwych po-
zycji maksymalnego numeru seryjnego w wektorze s(%)
mamy (m®) - 1);_; réznych wynikéw okreélajacych
reszte k — 1 numeréw. Tak wiec

ﬂwiarygodnos’c’(M(k) = m(k) | N = }’l)

_ k(m(k) - 1)k
(ng)

Rozktad prawdopodobienstwa a posteriori

Gestos¢ prawdopodobienstwa a posteriori jako funk-
cja N przypisuje prawdopodobienstwo kazdej mozliwej
liczby czolgéw n uwzgledniajac dane (sy,. .., ;) zgod-
nie z funkcjg wiarygodnosci (6) i naszymi uprzednimi
przekonaniami i wiedzg opisane przez 7, priori (N = 1).

Rozklad a posteriori jest warunkowym rozktadem
wynikajacym z wiarygodnosci i z rozktadu prawdopo-
dobienstwa a priori zgodnie z twierdzeniem Bayesa [30]
(rys.1)

Tfa prosteriori(N =n | S(k) = S(k))
_ Twiarygodnosé (S = sV | N = n) 1y prioni (N = 1)
) ﬂevidence(s(k) = S(k))

(1)

Mianownik, czyli prawdopodobienstwo obserwowanych
danych (ang. evidence) s [30] jest dane wzorem

ﬂevidence(s(k) = S(k))

= Z ﬂwiarygodnos’c’(s(k) = sk | N = n,)ﬂa priori(N = 7’1,)-
n’=0

(12)

Rozklad 7, prosteriori(N = 71 | §) = s traktujemy
jako rozktad prawdopodobienstwa dla N, skoro w prak-
tyce mamy zawsze do dyspozycji s(5). Niezalezne od n
Tevidence (S = s(K)), jest tylko czynnikiem normaliza-
cyjnym w mianowniku (11). Wzdr (11) interpretujemy na-
stepujaco: gestos¢ prawdopodobienstwa a priori jest aktu-
,Sk)
dajac w wyniku rozktad prawdopodobienstwa a poste-
riori dla N. Prawdopodobienstwo a posterioridla N = n
jest proporcjonalne do iloczynu wiarygodnosci i roz-
kiadu a priori dla N = n, co stanowi kompromis pomie-
dzy wiedzg a priori a wiarygodnoscig. Mozemy upro$ci¢
rozktad prawdopodobienstwa a posteriori (11) podstawia-
jac (6) i ograniczajac sume w (12) do liczby i czolgdw,
dla ktérych wiarygodnos¢ jest niezerowa. Zauwazmy, ze
tylko dwie dane ze zbioru danych (s1,. .., s¢) pojawiaja
si¢ we wzorze i s to dtugos¢ danych k i maksymalny
numer seryjny m(k)

alizowana w $wietle obserwowanych danych (sy, ...

Ty prosteriori(N =n | S(k) = S(k))
=TT, prosteriori(N =n | M(k) = m(k))
(n)zlﬂa priori(N = 7’1)

= I .
Z;ﬂn(k) (”')Zlﬂa priori(N — n’) {m) m 41, }(H)
(13)

Zauwazmy, ze mozemy takze otrzymac (13) postugujac
sie (10).
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Interpretacja. Gesto$¢ prawdopodobienistwa a posteriori
jako funkcja N (13) okresla prawdopodobienstwo liczby
czolgéw n, przy wzieciu pod uwage numerdéw seryjnych
(s15 ..., sk) zaobserwowanych na zdobycznych czolgach,
nasz model probabilistyczny procesu zdobywania wra-
zych czolgéw i nasza wiedze a priori, czyli kombinacje
naszych subiektywnych ocen i/lub obiektywnej uprzed-
niej wiedzy wyrazong rozkladem a priori w funkcji N.
Rozrzut (mierzony np. entropia informacyjng) rozkladu
a posteriori odzwierciedla epistemiczng (redukowalng
przez wigcej danych) [17, 47] niepewno$¢ naszej wiedzy
o liczbie czotgow.

Uwaga o ,,niepewnosci”. Zrédtem niepewnosci zawar-
tej w rozkladzie a posteriori jest brak pelnych danych:
nie udalo si¢ zdoby¢ wszystkich wrazych czolgdw, aby
mie¢ pewnos$¢, co do ich liczby®. W praktyce dodatko-
wym Zrédlem niepewnosci jest mozliwa nieadekwatnosé
modelu zdobywania wrazych czolgéw (zatozenie prob-
kowania z plaskiego rozktadu) we wzorze (6). Innymi
stowy, w opisie procesu zdobywania wrazych czolgow
mogtoby zachodzi¢ odchylenie od modelu prébkowania
z plaskiego rozkladu. W naszej analizie pomijamy taka
mozliwos¢.

Streszczenie opisu rozkladu a posteriori. Mozemy stre-
$ci¢ naszg wiedze zawartg w rozkladzie a posteriori po-
dajac punktowa estymate i maly zbiér liczb, dla kto-
rych prawdopodobienstwo jest najwieksze — wiarygodny
zbidr, w ktorym zapewne znajduje sie rzeczywista liczba
czolgdw*. Pozyteczng punktows estymatg jest mediana
rozkladu a posteriori; z definicji jest to warto$¢, dla ktorej
prawdopodobienstwo, ze n jest wigksze lub réwne me-
dianie, wynosi % Wrtasciwy wiarygodny podzbiér liczby
wrazych czolgéw to podzbidr a [26].

Ha = {i’l/ F T prosteriori(N =n' | M(k) = m(k)) > ﬂa},
(14)
gdzie 7, to najwigksze n spelniajace

Tla prosteriori(N eH, | M(k) = m(k)) 21-a. (15)

Innymi stowy, a, bedacy podzbiorem #,, to najmniejszy
zbior, ktdry zawiera cze$¢ (1 — a) rozktadu a posteriori
dla takich n, ze kazde z nich wystepuje z wiekszym praw-
dopodobienstwem niz dowolne # spoza tego zbioru.

Whioskowanie na podstawie rozkladu a posteriori. Po-
stugujac sie rozkladem a posteriori mozemy wyznaczy¢
dowolny zbiér n spetniajacych zadane warunki; np. praw-

3. Na pewno k < n, jezeli sg luki pomigdzy obserwowanymi nume-
rami seryjnymi (s, ..., sk ). Nawet gdy nie ma luk w (s1,..., Sk) >
to nie mozemy by¢ pewni, ze zdobyliémy wrazy czolg o najwiekszym
numerze seryjnym.

4. przy naszych zatozeniach o funkcji wiarygodnosci i rozktadzie
a priori

dopodobienstwo tego, ze liczba wrogich czotgéw jest
wigksza od jakiego$ n” wynosi

Tly prosteriori(N =n' | M(k) = m(k))

= Z Ty prosteriori(N =n | M(k) = m(k)) (16)

n=n’+1

Przyktad

Ponizszym przyktadem ilustrujemy podejscie bayesow-
skie do PNC.

Rozklad prawdopodobienstwa a priori w zaleznosci
od N. Zat6ézmy, ze mamy kres gorny #,,x mozliwej liczby
wrazych czolgdw na podstawie np. dostaw pewnych su-
rowcow koniecznych do produkeji czolgdw, a poza tym
zadnych innych informacji. Mozemy wtedy wybrac roz-
myty rozklad prawdopodobienstwa a priori — rozklad
plaski

1

Mmax + 1

TTa priori(N = I/l) = I{O ..... nmax}(n)' (17)

Ten rozktad prawdopodobienstwa a priori wyraza fakt, ze
przy braku jakichkolwiek danych (sy,...,sx) (tzn. zad-
nych numerdéw seryjnych ani nawet liczby k), sagdzimy,
ze catkowita liczba wrazych czolgéw N moze przyjac¢ do-
wolng warto$¢ ze zbioru (0, ..., N,y ) z takim samym
prawdopodobienstwem. Dla ustalenia uwagi zatézmy, ze

Nmax = 35. Na rysunku 2(a) widzimy 7, priori (N = n).

Dane (sy,...,sk) i funkcja wiarygodnosci. Zatozmy te-
raz, ze zdobyliémy k=3 czolgi (rys. 2(b)) z numerami
seryjnymi s©) = (15,14, 3). Maksymalny numer se-
ryjny to m©) = 15. Funkcja wiarygodnosci ze wzoru
(10) Tyiarygodnosc(M(3) = 15 | N = n) pokazana jest
na rysunku 2(c). Zauwazmy, ze funkcja wiarygodno$ci
osigga maksimum dla n = m®®) = 15, a potem maleje
jednostajnie.

Rozklad prawdopodobienstwa a posteriori w zalezno-
$ci od N. Uwzgledniajac rozktad a priori (17), ze wzoru
(13) otrzymujemy

TTy prosteriori(N =n | M(k) = m(k))

(n);!
= T o1

))))) . (n). (18)
Y !

Na rysunku 2(d) pokazany jest rozklad prawdopodo-
bienistwa a posteriori dla danych () z rysunku 2(b) i roz-
kiad prawdopodobienstwa a priori opisany wzorem (17)
(nmax = 35)
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Rys. 2. Podejécie bayesowskie do PNC. (a) Rozktad prawdopodobiefistwa a priori. (b) Dane s(*) z maksymalnym zaobserwowanym numerem seryjnym
m3) =15, (c) Funkcja wiarygodnosci dla danych s(3). (d) Rozktad prawdopodobieristwa a posteriori; Hy » jest wyréinione kolorem a mediana — pionows

linig przerywana.

prawdopodobienstwo

liczba czotgéw n

Rys. 3. Czulos¢ rozktadu a posteriori na zmiany kresu gérnego #imax uzy-
tego w rozktadzie a priori.

Podsumowanie opisu rozkladu a posteriori. Rozktad
a posteriori jako funkcja N ma mediane 19 i wiarygodny
podzbidr Hy, = {15,...,25} wyrdzniony kolorem na
rysunku 2(d); dane te zostaly wygenerowane kompute-
rowo dla liczby czolgéw n = 20, co uzasadnia skale uzyta
na rysunku 2(b).

Whnioskowanie na podstawie rozkladu a posteriori. Za-
t6zmy, ze strategia Aliantéw musialaby ulec zmianie,
gdyby liczba wrazych czolgdéw przekroczyta 30. Z roz-
ktadu a posteriori (N) obliczamy, Ze 7, prosteriori (N >
30 | M®) = 15) ~ 0,066.

Czulos¢ rozkladu a posteriori na zmiany w rozkladzie
a priori. Skoro przy konstruowaniu rozkladu a priori
odgrywa role czynnik subiektywny, jest dobra praktyka
sprawdzi¢ czuto$¢ rozkladu a posteriori na zmiany w roz-
ktadzie a priori [46]. Na rysunku 3 widzimy, jak zmienia
sie rozktad a posteriori, gdy zmieniamy gorny kres liczby
wrazych czolgow 1y, ktorego uzywamy we wzorze (17).
Na przykiad, gdy zmienimy na #n,,x = 75, to wiarygodny
podzbiér zwieksza sie do Ho, = {15,...,29}.

Efekt zdobycia wigkszej liczby wrogich czolgow. Za-
t6zmy, ze zdobylismy dodatkowych 9 czolgéw i pow-
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s1 =15

sy =14 s3=3

liczba czotgow n
(b) zaktualizowany rozklad a posteriori
Rys. 4. Rozklad a posteriori po zdobyciu wigkszej liczby wrazych czol-

g6w. (a) Zdobyliémy dodatkowych 9 czolgéw. (b) Zaktualizowany rozklad
a posteriori jako funkcja N.

torzmy analize bayesowska. Na rysunku 4 pokazany jest
zaktualizowany rozklad a posteriori. Wiarygodny pod-
zbi6r H, zmniejsza sie znacznie do {19,20}. Wida¢,
jak wiecej danych (wigksza liczba zdobycznych czolgow)
ogolnie zmniejsza nasza niepewnos¢ oceny liczby wra-
zych czolgéw.

Badania zachowania rozkladu a posteriori przy zmianie
znanej liczby wrazych czolgéw, za pomoca symulacji
komputerowych

Badamy tu, jak srednio symulowane wyniki zdobywania
wrogich czolgdw, przy zatozeniu ustalonej ich liczy, poka-
zuja zaleznos$¢ prawdopodobienistwa a posteriori liczby
czolgOW 7T, prosteriori(N = 71 | sk = gk )) od liczby k
zdobycznych czolgéw i od maksimum #,,,x W postulo-
wanym plaskim rozkladzie a priori.

Dla zadanego k i #11,x wykonujemy 50 000 symula-
cji. W kazdej wybieramy losowo k wrazych czotgdw ze
zbioru n = 20, obliczamy prawdopodobienstwa a poste-
riori liczby czolgow 7, prosteriori(N = 1 | S (k) = 5y,
nastepnie obliczamy mediane¢ i wiarygodny podzbidr
Ha(a =0.2). Na rysunku 5 widzimy w pierwszej kolum-
nie liczbe zdobycznych czolgéw, w pierwszym wierszu
rozklady a priori; dalej mamy tabele 3x3 wykresow: roz-
ktadu a posteriori, mediany i wiarygodnego podzbioru
dla (k, nmayx) € {3.6,9} x {25,50,100}. W miare wzro-
stu k, wiarygodny podzbiér H,, staje sie¢ mniej czuty na
Nmax> 8dyZz dane zaczynajg dominowac¢ nad rozkladem
a priori. Zbior H, staje si¢ coraz mniej liczny, jako ze
niepewno$¢ zmniejsza si¢ wraz ze wzrostem liczebnosci
probki. Ze wzrostem ny,.x, H, zawiera coraz to wiek-
sze warto$ci n (szacowane liczby wrogich czotgéw). Me-
diana uzyskanych w symulacji median rozktadéw a po-
steriori pokrywa sie z prawdziwg liczbg czolgdéw = 20
dla 7105 = 25 lub k = 9. Dla warto$ci k € {3, 6} wieksze
warto$ci nm,x przesuwajg mediane powyzej prawdziwe;j
liczby czotgéw.

Dyskusja

Blad selekcji. Formulujac podrecznikowo PNC przyjmu-
jemy mocne zalozenie, ktore pozwala estymowac liczbe
wrazych czolgéw na podstawie losowej probki nume-
réw seryjnych na nich wybitych, tj. postulujemy, ze nu-
mery seryjne sg wybrane ze zbioru liczb (1,2,...) ize
kazda liczba jest rownie prawdopodobna (rozktad pta-
ski); Goodman pokazal w [22] test na te hipoteze. Intere-
sujaca wariacjg na temat PNC mogloby by¢ modelowanie
innych rozktadéw prawdopodobienstwa zaobserwowa-
nia danego numeru seryjnego. Na przyklad moglibysmy
uwzglednia¢ fakt, ze starsze czolgi, z mniejszymi nume-
rami seryjnymi, mogly by¢ wprowadzone do walki wcze-
$niej. To mogloby spowodowad, ze starsze wraze czolgi
bytyby trudniejsze do zdobycia niz te nowsze, jako ze
pdzniejsze fronty byly mniej ufortyfikowane. Innym przy-
ktadem btedu selekcji mogloby by¢ to, Ze numery seryjne
grupuja sie w grupy blisko lezacych liczb.

PNC w innych kontekstach. Bayesowskie podejscie
uzyte do analizy PNC mozna zastosowaé (by¢ moze
z jakimi$ modyfikacjami) w innych sytuacjach, gdy
potrzebujemy oszacowania wielkosci jakiego$ innego
skoniczonego zbioru [9], np. liczby takséwek w miescie
[19, 23], samochodéw na torze wyscigowym [48], ra-
chunkéw w banku [25], mebli zakupionych przez uni-
wersytet [22], operacji na lotnisku [34], rozpraw w sadzie
[50] lub sprzetu elektronicznego wyprodukowanego w fa-
bryce [2]. W ten sam sposob mozemy szacowac: liczbe
tajnych dokumentéw rzadowych, ktére wyptynetly na
jaw [18], czas potrzebny do zakoriczenia projektu [16],
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liczba czotgéw n

Rys. 5. Sredni wiarygodny podzbiér i mediana mediany rozktadu a posteriori przy stalej liczbie czotgéw. Wiersze: rézne liczby k zdobycznych czotgéw
(lewa cze$¢). Kolumny: rézne zalozenia a priori o gornym kresie mozliwej liczby czolgdw nmax dla rozkladu plaskiego (gora). Dla kazdej pary (k, #max)
wykres pokazuje prawdopodobienstwo a posteriori liczby czolgow. Pionowe linie przerywane wskazuja mediane, a czerwona strzatka - rzeczywista liczbe

réwna 20.

okres opisu ekstremalnych zjawisk w przesztosci takich
jak powodzie [39], dlugos¢ krétkich tandemowych po-
wtérzen allelu (allel to jedna z wersji genu - przyp.
red.) [51], rozmiar sieci spolecznych w Internecie [28],
czas zycia kwiatu [38] lub czas trwania jakiego$ ga-
tunku [42]. Dodatkowo w badaniach ekologicznych
obrgczkowanie i odlawianie pozwala na ocene liczeb-
nosci zwierzat 8, 36]. Wszystko to jest spokrewnione
z PNC.

Praktyka wybijania kolejnych numeréw na sprzecie
wojskowym. W Niemczech wprowadzono praktyke
oznaczania sprzetu wojskowego numerami seryjnymi
i kodami pozwalajacymi zidentyfikowaé producenta.
Jednak uzycie kolejnych numerdéw seryjnych zostalo
wykorzystane przez Aliantéw do szacowania tempa
produkcji uzbrojenia w III Rzeszy. Aby zmniejszy¢ za-
grozenie szacowania produkcji analizg numeréw se-
ryjnych, przy zachowaniu zalet mozliwosci identyfi-

kacji producenta, mozna zastosowa¢ szyfrowanie [14]
lub konfundowanie przeciwnika metoda zwang z ang.

chaffing [40].
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