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Is the Galilean law of free fall an a priori truth?
Tomasz Bigaj*
Wydział Filozoûi Uniwersytetu Warszawskiego

Abstrakt.W niniejszym artykule omawiam znany argument a priori Galileusza przeciwko Arystotelesowskiemu prawu
spadku swobodnego, przedstawiając gow uwspółcześnionej matematycznej postaci. Pokazuję, że argument ten nie dowodzi,
iż tempo spadku swobodnego jest stałe dla wszystkich ciał, chyba że założymy, że jest ono funkcją jednego addytywnego
parametru. Jednakże jest całkowicie możliwe, że tempo spadku będzie dane w postaci stosunku dwóch addytywnych
parametrów. W takim wypadku argument upada.
Słowa kluczowe: spadek swobodny, Arystoteles, Galileusz, suma wypukła, addytywność

Abstract. In this short note I discuss Galileo’s well-known a priori argument against Aristotle’s law of free fall, presented in
amodern mathematical version. I show that the argument does not prove that the rate of fall should be constant for all
bodies, unless we presuppose that the rate of fall is a function of one additive parameter. However, it is perfectly possible
that the rate of fall will be given in the form of the ratio of two additive parameters, in which case the argument does not
go through.
Keywords: free fall, Aristotle, Galileo, convex sum, additivity

Modern science owes a huge debt of gratitude to Galileo
Galilei, the famous Italian polymath. His role in over-
turning the old, Aristotelian and Ptolemaic world view,
while paving theway to the scientiûc revolution that later
gave us Newton and Einstein, cannot be overestimated.
Galileo was a keen observer and skillful experimenta-
list, but he also had an uncanny ability to invent simple
and ingenious theoretical arguments in his numerous
polemics with his scientiûc adversaries. For instance, in
response to the Aristotelian explanation of themotion
of projectiles in terms of the pressure from the displaced
amount of air he astutely observed that if this explana-
tion was correct, then an arrow shot perpendicularly
to the direction of motion should �y faster than an ar-
row pointing in the direction of its motion. One of the
most famous arguments thatGalileo produced dealtwith
the phenomenon of free fall. As it turns out, even a�er
four centuries the argument presents us with interesting
challenges, particularly regarding the role of a priori,ma-
thematical reasoning in discovering rules and principles
governing the physical world.

he argument Galileo used against the then domi-
nant Aristotelian theory of free fall is beautiful in its
simplicity. Aristotle assumed, as seems natural, that the
rate of fall for heavy objects (measured, for instance, by
the amount of time required to reach the ground when
dropped from a ûxed height) is proportional to their
weight. Here is a quote from Physics conûrming this
stance:
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We see that bodies which have a greater impulse either

of weight or of lightness, if they are alike in other respects,

move faster over an equal space, and in the ratio which

their magnitudes bear to each other.

While the Aristotelian law of free fall in its above-
given version does not withstand closer scrutiny, since it
is easy to observe that a ten-kilogram body does not
fall down ten times faster than a one-kilogram one,
the ûnal blow to the Peripatetic conception was de-
alt by argumentation a priori. Salviati, a character in
the Dialogue Concerning the Two ChiefWorld Systems

who presents Galileo’s own views, announces that: even
without further experiment, it is possible to prove clearly,

by means of a short and conclusive argument, that a

heavier body does not move more rapidly than a lighter

one.

he argument considers two bodies diòering in we-
ight only. Given Aristotle’s law of free fall, the heavier
body should reach the ground faster than the lighter one.
But what will happen when we connect these bodies ri-
gidly, so that they will have to move as one? On the one
hand, the resulting body will be heavier than each of
its components taken separately, therefore it should fall
even faster. On the other hand, as Salviati observes: it
is clear that on uniting the two, the more rapid one will

be partly retarded by the slower, and the slower will be

somewhat hastened by the swi�er.

hus the rate of descent of the combined body should
fall somewhere between the rates for individual compo-
nents, which contradicts the earlier conclusion. Aristo-
tle’s law (as amatter of fact any law which implies that
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the rate of fall is an increasing function of weight) turns
out to be inconsistent.

It may be remarked that Galileo’s argument does not
look entirely a priori, since the premise spelled out in
the quotation above, no matter how intuitive, does not
seem to be logically or conceptually necessary. he status
of the assumption regarding the “hastening” and “retar-
ding” phenomena is somewhatmurky. It does not appear
to be a straightforward generalization from experience,
since it is based on the condition which does not occur
in reality (in fact there are no “hasteners” or “delayers”
in the Galilean sense – all objects fall at the same rate,
no matter their weight).1 Yet there is something very
compelling about the counterfactual statement that if
the considered objects had diòerent “natural speeds” as-
sociated with their weights, then joining them together
would result in an object whose natural speed would fall
between the two values.Wewill simply assume this to be
true without further justiûcation, regardless of whether
it is a conceptual truth or a basic fact about the world
that is very unlikely to be refuted.

Galileo’s elegant thought experiment is suõcient to
refute the theory of Aristotle, but can it establish the al-
ternative law of free fall as proposed by the great Italian
scientist? Galileo famously maintained that, ignoring air
resistance, all bodies fall at the same rate regardless of
their weight. his looks like a genuine empirical claim
which must be experimentally corroborated to be ac-
cepted. And yet it is possible to give a straightforward
mathematical argument apparently showing that the Ga-
lilean law of free fall must be true! Let us present this
argument in some details. Let us ûrst write the rate of
fall of any heavy body (which nowadays we represent
by its acceleration) as a function of its mass f (m). Mass,
in turn, is supposed to be additive with respect to the
operation of physical summing. hat is, for any non-
overlapping bodies a1 , . . . an , the mass of the physical
sumof these bodies equals the sumof the individual mas-
ses:m(a1 ∪ a2 ∪ . . . an) = m(a1)+m(a2)+ ⋅ ⋅ ⋅ +m(an).

hemost important premise of the argument is the
condition that the function f representing the rate of fall
must be such that the value of f for the sum ofmasses
m1 , . . .mn is a convex sum of the values of f for the indi-
vidual masses, that is the value of f (m1 + ⋅ ⋅ ⋅ +mn) must
fall somewhere between theminimal and themaximal
values of f (m i). his is a straightforward generalization
of Galileo’s “hasteners” and “delayers” claim given above,

1. James R. Brown insists that Galileo’s reasoning regarding retarding
and hastening is genuinely a priori (a thought experiment) and does
not require any experimental veriûcation. See J.R. Brown, “Why tho-
ught experiments transcend empiricism”, in: C. Hitchcock (ed.), Con-
temporaryDebates in Philosophy of Science, Blackwell 2004, pp. 23-43.

and can be expressedmathematically as follows:

f (∑
i

m i) =∑
i

p i f (m i
), (1)

where ∑i p i = 1 and p i ≥ 0 for all i. Now, it is easy to
prove that any function f satisfying (1) must be identical
on all rational numbers. Take any two rational numbers
presented in the form of two fractions with common
denominators: m

l
and k

l
. From (1) it follows that

f (m

l
) = f (1

l
+ ⋅ ⋅ ⋅ + 1

l
)
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= f (1
l
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and likewise for k

l

f ( k

l
) = f (1

l
+ ⋅ ⋅ ⋅ + 1

l
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

= f (1
l
) (3)

from which we conclude that f (m

l
) = f ( k

l
). Assuming

that f is continuous, we have proven that f is constant
on all numbers.

his result is baøing. Galileo’s law of free fall seems
to be an important empirical claim about our world – a
claim that could easily turn out to be incorrect. Its im-
portance is highlighted by the well-known fact that the
constancy of the rate of fall in a uniform gravitational
ûeld is directly connected with the identity between in-
ertial mass and gravitational mass – the surprising and
contingent fact that gave rise to Einstein’s general theory
of relativity. Surely, the fact that gravitational mass and in-
ertial mass are equivalent should not be derivable a priori
from some elementarymathematical considerations. But
how canwe explain the existence of amathematical proof
for the fact that the rate of fall for all bodies must be the
same?

It is not diõcult to observe that the culprit is the pre-
mise that the rate of fall is a function ofmass only. To be
accurate, the above argument will go through under the
assumption that the function f depends on any additive
parameter at all, not necessarily mass, as long as there
is no functional dependence on some other parameters.
But this assumption may very well be questioned. As an
example let us consider a possible scenario in which the
function f can be presented as a ratio of two functions
g and h, each of which is an additive quantity charac-
terizing a particular physical object a: f (a) = g(a)

h(a) .
2

Somewhat surprisingly, it can be shown that given this

2. Perhaps I should add here one clariûcatory comment: the function
f is not deûned on the set of real numbers but on the set of physical
objects, in contrast to the previous case, in which f could be deûned
as a function of mass, represented by real numbers. If we wanted
to represent f purelymathematically, we would have to treat it as a
function of two arguments: f (g , h) = g

h
.
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assumption, a condition which is a generalization of (1)
is guaranteed to be satisûed:

f (
n

⋃
i=1
a i) =

n

∑
i=1

p i f (a i) , (4)

where p i are deûned as in formula (1), and a1 , . . . an are
some non-overlapping physical objects. Let a symbolize
the physical union ⋃n

i=1 a i . Given that g and h are addi-
tive, we can derive the following:

f (a) = g(a)
h(a) = ∑

n

i=1 g(a i)
∑n

i=1 h(a i)

=
n

∑
i=1

h(a i)
∑n

j=1 h(a j)
g(a i)
h(a i)

=
n

∑
i=1

h (a i)
∑n

j=1 h (a j)
f (a i). (5)

We can clearly see that the numbers h(a i)
∑n

j=1 h(a j) sum up to
1, and thus (given the assumption of the positivity of the
function h(x)) we conclude that f (a) is a convex sum
of the values f (a i), as stated in (4). hus the condition
imposed byGalileo on the function representing the rate
of fall is automatically satisûed. But this is the case regar-
dless of the fact that the value of the function f may vary
from body to body. Hence it is theoretically possible that
the rate of fall will be diòerent for diòerent bodies.

As amatter of fact, this is not amere theoretical po-
ssibility. Let us consider an electrically charged particle
in a uniform electrostatic ûeld (such as produced by a
capacitor consisting of two inûnite charged plates) as an
example. In that case the value of the acceleration of such
a particle is given as q

m
E, where q is the charge of the

particle, m – it’s mass and E the (constant) value of the
electric ûeld. Since both the charge andmass are additive
quantities, the Galilean condition (4) is satisûed, as pro-
ven above. Combining two particles whose rates of fall
are given respectively by q1

m1
E and q2

m2
E, where q1

m1
< q2

m2
,

we obtain a particle with a rate of fall equal to q1+q2
m1+m2

E,

and thus greater than that of particle 1 but smaller than
the rate of particle 2. Consequently, the faster particle
will hasten the slower one, while the slower will retard
the faster, exactly as demanded byGalileo. And all this is
perfectly compatible with the fact that diòerent particles
can have diòerent rates of descent, depending on their
charge-to-mass ratio.

An analogous situation would occur if gravitational
mass were diòerent from inertial mass. In that hypotheti-
cal scenario the acceleration of a free-falling body would
be proportional to the ratio of its gravitational mass mg

to its inertial mass m i like so: a = mg
m i

g. his by itself
would be suõcient to make the condition (4) true, but
if this ratio varied among diòerent bodies, the Galilean
law of free fall would be violated. hus it is conceptually
possible that Galileo’s condition of “hasteners” and “de-
layers” may be satisûed, and yet objects fall at diòerent
rates in the gravitational ûeld of the Earth.

In his generalization of the a priori argument against
Aristotle’s law of free fall, Galileo made a logical error,
which nevertheless turned out to be a happy one. He
assumed, following Aristotle, that the rate of fall is re-
presented by a function of one additive parameter (i.e.
mass), and from this assumption he derived that this
function must be constant. However, he overlooked the
fact that the crucial premise of his derivation – the as-
sumption that the rate of fall of a composition of two
bodies must be somewhere between the rates of fall for
these individual bodies taken separately – can bemade
true by representing the rate of fall of an object as a ratio
of two independent additive parameters. But Galileowas
proved right – whether by pure luck or thanks to the
intuition of a genius. As amatter of fact, the ratio of the
gravitational mass to the inertial mass for any object is
constant, and therefore the Galilean law of free fall is
correct. However, this fact had to be veriûed by experi-
ment, quite independently from any a priori reasoning
no matter how compelling.




