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Bayesowskie podejście do problemu niemieckich
czołgów*

A Bayesian Treatment of the German Tank Problem
Cory M. Simon**

Problem niemieckich czołgów (PNC) (ang.German tank
problem) ma ciekawe tło historyczne. Jest to także zaj-
mujący problem statystycznej estymacji nadający się na
zajęcia w szkole. Celem jest estymacja liczby czołgów
numerowanych kolejnymi numerami serii na podstawie
losowej próbki. W tym artykule wprowadzamy zarys
bayesowskiego podejścia do PNC . Rozwiązanie przypi-
suje prawdopodobieństwo wystąpienia każdej możliwej
liczby czołgów, co pozwala na ilościową ocenę niepewno-
ści estymacji (tj. średniej, wariancji itd. – przyp. tłum.).
Daje to także możliwość wprowadzenia do rachunku
wcześniejszej wiedzy lub przekonania o liczbie czołgów.
Podamy tu odpowiednie przykłady. Na zakończenie do-
konamy przeglądu podobnych zagadnień.

Tło historyczne

W celu sformułowania strategii wojskowej w czasie II
wojny światowej (1939-1945), Alianci starali się ocenić
tempo produkcji różnych typów sprzętu wojskowego
wroga (czołgi, opony, rakiety itd.) Zwykłe metody oceny
produkcji zbrojeniowej, włączając w to ekstrapolacje da-
nych o przedwojennej produkcji, źródła wywiadowcze
czy też przesłuchania jeńców wojennych, były w większo-
ści przypadków niewiarygodne lub sprzeczne. W 1943
roku amerykańskie i angielskie agencje wywiadu ekono-
micznego wykorzystały niemiecką praktykę, stosowaną
przy produkcji sprzętu, do statystycznej oceny produkcji
uzbrojenia w Niemczech. Otóż niemieccy producenci
oznaczali wyprodukowany sprzęt numerem seryjnym,
a także kodem zawierającym datę i miejsce produkcji.
Miało to ułatwiać zarządzanie częściami zamiennymi
oraz znajdowanie producenta wadliwego sprzętu czy też
części zamiennych, który mógłby dokonać kontroli jako-
ści. Jednocześnie te liczby i kody na zdobytym sprzęcie
nieprzyjaciela dawały Aliantom informację o produkcji
uzbrojenia w III Rzeszy.

*Dane oryginału artykułu: Simon, C.M. A Bayesian Treatment of
the German Tank Problem. Math Intelligencer 46, 117–127 (2024).
https://doi.org/10.1007/s00283-023-10274-6
**ORCID: 0000-0002-8181-9178

W celu oszacowania tempa produkcji czołgów,
Alianci zbierali numery seryjne znajdujące się na podwo-
ziach, silnikach, skrzyniach biegów i gąsienicach zdo-
bycznych czołgów, a także przeglądali zdobyte doku-
menty1.Mimo, że nie posiadanowyczerpujących danych,
kolejne numery sprzętu i regularności w kodach umożli-
wiły Aliantom estymację produkcji czołgów niemieckich.
Powojenne badania wykazały, że analiza numerów seryj-
nych dała bardziej dokładne oceny od zawyżonych esty-
mat uzyskanych konwencjonalnymi metodami analizy
(tab. 1)2. Zobacz artykuł Richarda Ruggles’a i Henry’iego
Brodie’go [44], opisujący szczegółowo historię analizy
numerów seryjnych, której użyto do oceny niemieckiej
produkcji broni w czasie II wojny światowej.

PNC

Uproszczenie historycznego kontekstu estymacji produk-
cji czołgów na podstawie analizy numerów seryjnych
[44] było motywem do sformułowania problemu w po-
staci dogodnej dla dyskusji o PNC w publikacji [21].

Sformułowanie problemu.W czasie II wojny światowej
armia III Rzeszy miała na stanie n czołgów. Każdy czołg
miał unikatowy numer seryjny ze zbioru liczb {1, . . . , n}.
Jako Alianci nie znamy n, ale zdobyliśmy próbkę k wra-
żych (wrogich – przyp. red.) czołgów (oczywiście jest
to losowanie bezzwrotne), z których każdy miał swój
numer seryjny z uporządkowanego zbioru {s1 , . . . , sk}.

s1 s1 sk

1. Na przykład zdobyte dokumenty ze składów części zamiennych
do czołgów zawierały listy numerów seryjnych podwozi i silników
zreperowanych czołgów, a dokumenty ze sztabów dywizji zawierały
numery seryjne czołgów danej jednostki.
2. Na przykład skrzynie biegówmiały wybite numery seryjne jednym
ciągiem. Numery podwozi natomiast były rozbite na bloki z prze-
rwami między nimi. Pozwalało to odróżnić blok opisujący model
i typ od bloku z numerem seryjnym.
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4 C. M. Simon, Bayesowskie podejście do problemu niemieckich czołgów

Zakładając, że prawdopodobieństwo zdobycia każdego
czołgu jest takie samo, a n jest nieznane, naszym celem
jest estymacja n na podstawie danych {s1 , . . . , sk}.

W roku 1942 Alan Turing i Andrew Gleason, sie-
dząc w zatłoczonej restauracji w Waszyngtonie, dyskuto-
wali o pewnym wariancie PNC, a mianowicie: jak oce-
nić liczbę taksówek (słynnych ang. yellow cabs – przyp.
tłum.) w mieście na podstawie zaobserwowanych loso-
wych numerów przejeżdżających taksówek [13, 24]. Na-
wet dziś, ze względu na ciekawe tło historyczne, jest to
ciągle interesującym tematem rozmowy przy stole imoże
posłużyć jako intelektualnie ciekawy, intrygujący i za-
bawny problem ilustrujący zagadnienia kombinatoryki
i teorii estymacji podczas zajęć szkolnych [3, 15, 27, 33].

Tab. 1. Miesięczna produkcja czołgów niemieckich [44]

miesiąc estymaty dane
niemieckietradycyjne oceny

angielskiego
i amerykańskiego wywiadu

analiza
numerów
seryjnych

czerwiec 1942 1000 169 122

lipiec 1942 1550 244 271

sierpień 1942 1550 327 342

Szacowanie niepewności oceny. Każda estymacja li-
czebności czołgów n na podstawie danych {s1 , . . . , sk}
jest obarczona niepewnością, gdyż nie zdobyliśmy
(zapewne!) wszystkich czołgów (tzn. prawdopodob-
nie k ≠ n). Znalezienie rozrzutu (błędu) estymacji jest
ważne, gdyż na podstawie estymat podejmuje się istotne
decyzje wojskowe.

Naszwkład.Wniniejszym dydaktycznym artykule wpro-
wadzamy zarys bayesowskiego podejścia do PNC, któ-
rego rozwiązanie określa prawdopodobieństwo każdej
możliwej liczby czołgów, co pozwala na ilościową ocenę
niepewności estymacji. Daje to także możliwość wprowa-
dzania do obliczeń wcześniejszej wiedzy lub przekonania
o liczbie czołgów.

Przegląd wcześniejszych prac nad PNC

Wnioskowanie częstościowe (ang. frequentist approach).
Kim Border [7] nazywa PNC „przedziwnym przypad-
kiem” estymowania za pomocą wnioskowania częstościo-
wego. Zasada największej wiarygodności estymuje liczbę
czołgów n jako maksymalny numer seryjny wśród k zdo-
bycznych niemieckich czołgów m(k) = maxi∈{1,. . . ,k} s i .
Jest to estymator obciążony, gdyż na pewno m(k) ⩽ n.
Leo Goodman [21, 22] wyprowadził nieobciążony esty-
mator o najmniejszej wariancji liczby czołgów

n̂ = m(k) + (m
(k)

k
− 1). (1)

Aby wyrobić sobie intuicję co do wzoru (1) zauważmy, że
n̂musi być większe od lub równem(k), a jeśli rozważymy
duże (lub małe) odstępy pomiędzy numerami seryjnymi
(s1 , . . . , sk), włączając w to odstęp pomiędzy zerem a naj-
mniejszym numerem, to n jest zapewne dużo większe
(lub nie) od m(k). Estymator n ze wzoru (1) wskazuje,
o ile n powinno być większe od m(k) w zależności od
obserwowanych odstępów; m(k)/k − 1 to średni odstęp
między numerami seryjnymi. Goodman [21] także wy-
prowadził wzór na dwustronny (1− a) przedział ufności
m(k) ⩽ n ⩽ x, gdzie x to największa liczba całkowita
spełniająca (m(k) − 1)k/(x)k ⩾ a (oznaczenie (n)k dla
malejącej silni zdefiniowano w [5]).

Zastosowania w dydaktyce. Julian Champkin [23] pod-
kreśla, że użycie statystyki do estymacji niemieckiej pro-
dukcji czołgów w czasie II wojny światowej to był „wielki
moment dla statystyki”. Roger Johnson [27] podaje i oce-
nia wiele intuicyjnie jasnych punktowych estymatorów
liczby czołgów. Richard Schaeffer i in. [45] proponują
doświadczalne oszacowanie przez uczniów liczby ponu-
merowanych żetonów w worku poprzez wylosowanie
kilku z nich i zanotowanie ich numerów jako model
dla PNC. Arthur Berg [3] organizuje w klasie konkurs
na znalezienie najlepszego estymatora liczby ludności
w mieście na podstawie losowej próbki. George Clark
i in. [10] badają użycie symulacji zdobywania wrażych
czołgów i regresji liniowej do wykrycia estymatora ze
wzoru (1).

Podejście bayesowskie. Blisko związane z naszymi dy-
daktycznymi badaniami bayesowskiego podejścia do
PNC są prace opublikowane przez innych badaczy. Harry
Roberts [41], Michael Hoele i Leonard Held [25], Wol-
fgang Von der Linden, Volker Dose, Udo Von Toussa-
int [49], Simona Cocco, Remi Monasson, Francesco Za-
mponi [11] podejmują się bayesowskiej analizy PNC i wy-
prowadzają wzór analityczny na średnią i wariancję dla
rozkładu prawdopodobieństwa a posteriori liczby czoł-
gów w przypadku, gdy rozkład prawdopodobieństwa
a priori jest płaski. Mark Andrews [1] daje zarys podej-
ścia bayesowskiego do PNC na swoim blogu, gdzie także
znajduje się program napisany w języku programowania
R (służącym do obliczeń statystycznych i wizualizacji
danych – przyp. red.). William Rosenberg i John Deely
[43] dają zarys empirycznego podejścia dla estymacji
liczby koni na wyścigach na podstawie próbki numerów
kilku koni (funkcja wiarygodności jest równoważna tej
dla PNC). Arthur Berg i Naur Hawila [4] posługują się
wnioskowaniem bayesowskim w podobnym problemie
taksówek.

Warianty i uogólnienia problemu. Goodman [21, 22]
oraz Clark, Gonye i Miller [10] rozważają wariant PNC,
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w którym początkowy numer seryjny jest nieznany;
innymi słowy n czołgów jest znakowane numerami
{b + 1, . . . , n + b}, ale b oraz n są nieznane. Lee i Miller
uogólniają problem do sytuacji, gdy numery seryjne po-
chodzą z ciągłego zbioru liczb, a nawet gdy te numery są
wybrane z kuli lub hipersześcianu w przestrzeni dwu lub
więcej wymiarowej.

Przegląd bayesowskiego podejścia do PNC
Z bayesowskiego punktu widzenia [6, 15, 46] traktu-
jemy (nieznaną) liczbę całkowitą czołgów jako dyskretną
zmienną losową N , aby modelować stan naszej niepew-

ności. Rozkład prawdopodobieństwa N daje nam praw-
dopodobieństwo dla każdej możliwej liczby czołgów n.
To prawdopodobieństwo jest miarą naszej wiary, być
może skojarzonej z jakąś uprzednią wiedzą, że ta liczba
wynosi n [20]. Rozkład prawdopodobieństwa N opi-
suje naszą niepewność. Zaobserwowane numery seryjne
(s1 , . . . , sk) zawierają informację o liczebie czołgów. Tak
więc rozkład prawdopodobieństwa N zmienia się, kiedy
weźmiemy pod uwagę dane pomiarowe (s1 , . . . , sk). Zna-
czy to, że N ma rozkład prawdopodobieństwa przed po-
miarem (a priori) i po pomiarze (a posteriori).

zbiór niemieckich
czołgów
N = n

(S(k) = s(k)) ∩ (N = n)

S(k) = s(k)

s1 s2

aliancka próbka zbioru
niemieckich czołgów

π(N =n ∣S(k)= s(k))
a posteriori

=

wiarygodność

π(S(k)= s(k) ∣N =n)
a priori

π(N =n)

π(S(k)= s(k))
prawdopodobieństwo obserwowanych danych

dwa sformułowania prawdopodobieństwa warunkowego

π(N =n ∣S(k)= s(k))= π[(S
(k)= s(k)) ∩ (N =n)]
π(S(k)= s(k))

π(S(k)= s(k) ∣N =n)= π[(S
(k)= s(k)) ∩ (N =n)]

π(N =n)

twierdzenie Bayesa

Rys. 1. Zastosowanie twierdzenia Bayesa do PNC. Diagram Eulera [32, 37] przedstawia dwie konfiguracje S(k) = s(k) i N = n za pomocą kół. Powierzchnia
każdego koła jest proporcjonalna do prawdopodobieństwa konfiguracji, a powierzchnia przecięcia – do jednoczesnego wystąpienia obu konfiguracji
(S(k) = s(k)) ∩ (N = n). Diagram Eulera ilustruje dwie konfiguracje jako przecinające się względne prawdopodobieństwa, co implikuje twierdzenie
Bayesa [30].

Oto trzy elementy podejścia bayesowskiego do pro-
blemu PNC:

1) rozkład prawdopodobieństwa a priori N uwzględnia-
jący naszą wiedzę lub przekonanie o wartości n przed
uzyskaniem próbki numerów seryjnych,

2) dane, czyli próbka numerów seryjnych (s1 , . . . , sk)
traktowanych jako wynik losowania zmiennych loso-
wych (S1 , . . . , Sk) przy założeniu, że wybór numerów
jest czysto stochastyczny (losowy),

3) wiarygodność wyrażająca prawdopodobieństwo ob-
serwowanych danych (S1 , . . . , Sk) = (s1 , . . . , sk) dla
każdej wartości N = n, zależnie od przyjętego staty-
stycznego modelu przechwytywania czołgów.

Wynikiem baysowskiego podejścia do problemu
PNC jest rozkład prawdopodobieństwa a posteriori na

podstawie danych (s1 , . . . , sk). Rozkład prawdopodo-
bieństwa a posteriorimożna uważać za aktualizację roz-
kładu a priori w świetle nowych danych (rys. 1). Roz-
kład prawdopodobieństwa a posteriori dla N przypi-
suje każdej liczbie czołgów n prawdopodobieństwo bę-
dące kompromisem między wiarygodnością (odwołu-
jącą się do modelu pozyskiwania zdobycznych czołgów
i obserwowanych danych (s1 , . . . , sk) oraz hipotezy, że
liczba czołgów wynosi n), a rozkładem prawdopodo-
bieństwa a priori N , które wynika z naszego przeko-
nania o wartości n przed uzyskaniem próbki numerów
seryjnych (s1 , . . . , sk) [46]. Rozkład prawdopodobień-
stwa a posteriori jest wyjściowym wynikiem dla dalszej
analizy i obrazuje, jak rozrzucone są prawdopodobień-
stwa w N . Możemy uzyskać sumaryczny wynik ana-
lizy podając np. medianę i mały zbiór liczb, dla któ-
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rych prawdopodobieństwo jest największe, czyli wiary-
godny zbiór, w którym zapewne znajduje się rzeczywista
liczba czołgów. Dalej, na podstawie rozkładu a poste-
riorimożemy odpowiedzieć na pytanie : jakie jest praw-
dopodobieństwo, że n będzie większe od pewnej pro-
gowej wielkości n′, która mogłoby zmienić wojskową
strategię.

Tab. 2. Lista parametrów/zmiennych
parametry/zmienne ∈ opis

n N⩾0 liczba czołgów
k N>0 liczba zdobytych czołgów
s i N>0 numer seryjny i-tego czołgu
s(k) Nk

>0 wektor numerów seryjnych k
zdobycznych czołgów

m(k) N>0 maksymalny numer seryjny
wśród k zdobycznych czołgów

Bayesowskie podejście do PNC

Teraz zajmiemy się szczegółami podejścia bayesowskiego
do PNC i zilustrujemy to przykładem (użyte dalej sym-
bole podane są w tab. 2). Używamy dużych liter dla
zmiennych losowych a małych – dla ich konkretnych
realizacji. Używamy funkcji charakterystycznej związa-
nej ze zbiorem A:

IA(x) =
⎧⎪⎪⎨⎪⎪⎩

1 x ∈ A,
0 x ∉ A.

(2)

Rozkład prawdopodobieństwa a priori. Tworzymy
rozkład prawdopodobieństwa a priori, będący kombi-
nacją naszych subiektywnych ocen i/lub obiektywnej
wcześniejszej wiedzy o πa priori(N = n) przed uzyska-
niem próbki numerów seryjnych (s1 , . . . , sk). Rozkład
prawdopodobieństwa a priori N , który postulujemy, za-
leży od okoliczności. Jeśli nie mamy żadnej informacji
a priori o liczbie czołgów, to możemy przyjąć zasadę
niewyróżniana żadnych parametrów i użyć rozmytego
rozkładu a priori np. rozkładu płaskiego. W przeciwnym
wypadku, kiedy mamy zgrubne pojęcie o liczbie czołgów
z innych źródeł lub analiz, możemy opisać to rozkładem
zawierającym więcej informacji, np. rozkładem skoncen-
trowanym wokół naszej najlepszej uprzedniej estymacji.
Zgodnie z definicją rozmyte rozkłady zawierają większą
nieoznaczoność, mierzoną np. entropią [35]. (We współ-
czesnej statystyce, w sytuacji, gdy brakuje nam informacji
o danym parametrze, wybieramy rozkład o największej
entropii informacyjnej Shannona; w rozważanym przy-
padku jest to rozkład płaski [46] – przyp. tłum.)

Jeśli teraz myślimy o rozkładzie prawdopodobień-
stwa a posteriori, który balansuje między rozkładem
a priori a wiarygodnością (wykorzystującą dane), to roz-
kład a priori, niosący więcej informacji niż rozkład roz-
myty, będzie miał większy wpływ na rozkład a poste-

riori niż rozkład rozmyty, który „pozwala danym mó-
wić samodzielnie” [15]. Zasadniczo, kiedy liczba zdo-
bycznych czołgów k rośnie, to spodziewamy się, że roz-
kład a priori będzie miał coraz mniejszy wpływ na roz-
kład a posteriori [15], jako że dane „zdominują” rozkład
a priori.

Dane, generowanie danych i funkcja wiarygodności

Dane. Dane, którymi dysponujemy w PNC to wektor

s(k) = (s1 , . . . , sk) (3)

numerów seryjnych wybitych na k zdobycznych czoł-
gach. Dane te traktujemy jako realizację wektora roz-
kładów losowych S(k) = (S1 , . . . , Sk). W tym miej-
scu zakładamy, że kolejność pojmanych czołgów ma
znaczenie.

Proces generowania danych. Stochastyczne generowa-
nie danych polega na kolejnym, bezzwrotnym zdoby-
waniu k czołgów ze zbioru n czołgów, a następnie za-
pisywaniu ich numerów do (s1 , . . . , sk). Zakładamy, że
w każdym kroku dowolny czołg ma takie samo praw-
dopodobieństwo bycia zdobytym. Z matematycznego
punku widzenia to jest losowanie bezzwrotne k liczb
całkowitych z rozkładu płaskiego ze zbioru {1, . . . , n}.

Funkcja wiarygodności. Funkcja wiarygodności daje
prawdopodobieństwo obserwacji danych (S1 , . . . , Sk) =
(s1 , . . . , sk) przy założeniu, że liczba czołgów N = n.
Każdy wynik s(k) w przestrzeni próbek Ω(k)n jest tak
samo prawdopodobny, gdzie

Ω(k)n = {(s1 , . . . , sk)≠ ∶ s i ∈ {1, . . . , n}
dla wszystkich i ∈ {1, . . . , k}}, (4)

a zapis (⋯)≠ oznacza, że elementy wektora (⋯) są różne.
Liczba wyników ∣Ω(k)n ∣ w przestrzeni próbek, to liczba
różnych uporządkowań k unikatowych liczb ze zbioru
{1, . . . , n} dana wzorem na malejącą silnię

(n)k = n(n − 1)⋯(n − k + 1) =
n!

(n − k)! . (5)

W czasie generowania danych prawdopodobieństwo za-
obserwowania S(k) = s(k) przy założeniu, że rozkład
liczby czołgów N = n jest płaski

πwiarygodność(S(k) = s(k) ∣ N = n) = 1
(n)k

IΩ(k)n
(s(k)).

(6)
Interpretacja. Wiarygodność dana jest wzorem, z któ-
rego wynika, jak mocne jest poparcie dla naszej wiedzy
wynikającej z analizy numerów seryjnych k zdobycznych
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czołgów w s(k) w porównaniu z naszym probabilistycz-
nym modelem zdobywania wrażych czołgów, przy hipo-
tezie, że liczba czołgów to n [46]. Traktujemy wyraże-
nie πwiarygodność(S(k) = s(k)minN = n) jako funkcję n,
gdyż mamy tylko do dyspozycji dane s(k), a nie n.

Wiarygodność jako sekwencja zdarzeń.Możemywypro-
wadzić wzór (6) w inny sposób. Rozważmy ciąg zdarzeń
S1 = s1, S2 = s2 , . . . , Sk = sk . Prawdopodobieństwo wy-
stąpienia danego numeru na zdobytym czołgu, biorąc
pod uwagę liczbę czołgów i numery seryjne uprzednio
zdobytych czołgów, wynika z rozkładu płaskiego

π(S i = s i ∣ N = n, S1 = s1 , . . . , S i−1 = s i−1)

= 1
n − i + 1I{1,. . . ,n}∖{s1 , . . . ,s i−1}(s i), (7)

skoro mamy do dyspozycji n − (i − 1) czołgów do loso-
wego wybrania z rozkładu płaskiego. Z reguły mnoże-
nia niezależnych prawdopodobieństw [29] sumaryczne
prawdopodobieństwo to

πwiarygodność(S1 = s1 , . . . , Sk = sk ∣ N = n)

=
k

∏
i=1

π(S i = s i ∣ N = n, S1 = s1 , . . . , S i−1 = s i−1), (8)

co daje wzór (6) po wykorzystaniu własności funkcji
charakterystycznej.

Funkcja wiarygodności w zależności odmaksymalnego
obserwowanego numeru seryjnego. Przekonamy się tu,
że tylko dwie niezależne cechy danych (s1 , . . . , sk) po-
dają informację o liczbie czołgów N : długość próbki k
oraz obserwowany maksymalny numer seryjny

m(k) = max
i∈{1,. . . ,k}

s i . (9)

Tak więc szukamy tu innej funkcji wiarygodności, tj.
prawdopodobieństwa πwiarygodność(M(k) = m(k) ∣
N = n) zaobserwowania maksymalnego numeru se-
ryjnego m(k) dla zadanej liczby N = n. Każdy wy-
nik s(k) ∈ Ω(k)n jest tak samo prawdopodobny, więc
πwiarygodność(M(k) = m(k) ∣ N = n) jest ułamkiem prze-
strzeni próbek Ω(k)n , w której maksymalny numer se-
ryjny to m(k). Aby obliczyć liczbę wyników s(k) ∈ Ω(k)n ,
gdzie maksymalny numer seryjny to m(k), rozważmy
taką sytuację, że jeden z k zdobycznych czołgów ma nu-
mer seryjny m(k), a pozostałe k − 1 mają numery ze
zbioru {1, . . . ,m(k) − 1}. Dla każdej z k możliwych po-
zycji maksymalnego numeru seryjnego w wektorze s(k)

mamy (m(k) − 1)k−1 różnych wyników określających
resztę k − 1 numerów. Tak więc

πwiarygodność(M(k) = m(k) ∣ N = n)

= k(m(k) − 1)k−1
(nk)

I{k , . . . ,n}(m(k)). (10)

Rozkład prawdopodobieństwa a posteriori

Gęstość prawdopodobieństwa a posteriori jako funk-
cja N przypisuje prawdopodobieństwo każdej możliwej
liczby czołgów n uwzględniając dane (s1 , . . . , sk) zgod-
nie z funkcją wiarygodności (6) i naszymi uprzednimi
przekonaniami i wiedzą opisane przez πa priori(N = n).

Rozkład a posteriori jest warunkowym rozkładem
wynikającym z wiarygodności i z rozkładu prawdopo-
dobieństwa a priori zgodnie z twierdzeniem Bayesa [30]
(rys. 1)

πa prosteriori(N = n ∣ S(k) = s(k))

=
πwiarygodność(S(k) = s(k) ∣ N = n)πa priori(N = n)

πevidence(S(k) = s(k)) .

(11)

Mianownik, czyli prawdopodobieństwo obserwowanych
danych (ang. evidence) s(k) [30] jest dane wzorem

πevidence(S(k) = s(k))

=
∞

∑
n′=0

πwiarygodność(S(k) = s(k) ∣ N = n′)πa priori(N = n′).

(12)

Rozkład πa prosteriori(N = n ∣ S(k) = s(k)) traktujemy
jako rozkład prawdopodobieństwa dla N , skoro w prak-
tyce mamy zawsze do dyspozycji s(k). Niezależne od n
πevidence(S(k) = s(k)), jest tylko czynnikiem normaliza-
cyjnym wmianowniku (11). Wzór (11) interpretujemy na-
stępująco: gęstość prawdopodobieństwa a priori jest aktu-
alizowana w świetle obserwowanych danych (s1 , . . . , sk)
dając w wyniku rozkład prawdopodobieństwa a poste-
riori dla N . Prawdopodobieństwo a posteriori dla N = n
jest proporcjonalne do iloczynu wiarygodności i roz-
kładu a priori dla N = n, co stanowi kompromis pomię-
dzy wiedzą a priori a wiarygodnością. Możemy uprościć
rozkład prawdopodobieństwa a posteriori (11) podstawia-
jąc (6) i ograniczając sumę w (12) do liczby i czołgów,
dla których wiarygodność jest niezerowa. Zauważmy, że
tylko dwie dane ze zbioru danych (s1 , . . . , sk) pojawiają
się we wzorze i są to długość danych k i maksymalny
numer seryjny m(k)

πa prosteriori(N = n ∣ S(k) = s(k))
= πa prosteriori(N = n ∣ M(k) = m(k))

=
(n)−1k πa priori(N = n)

∑∞n′=m(k)(n′)−1k πa priori(N = n′)
I
{m(k) ,m(k)+1,. . . }(n).

(13)

Zauważmy, że możemy także otrzymać (13) posługując
się (10).
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Interpretacja.Gęstość prawdopodobieństwa a posteriori
jako funkcja N (13) określa prawdopodobieństwo liczby
czołgów n, przy wzięciu pod uwagę numerów seryjnych
(s1 , . . . , sk) zaobserwowanych na zdobycznych czołgach,
nasz model probabilistyczny procesu zdobywania wra-
żych czołgów i naszą wiedzę a priori, czyli kombinację
naszych subiektywnych ocen i/lub obiektywnej uprzed-
niej wiedzy wyrażoną rozkładem a priori w funkcji N .
Rozrzut (mierzony np. entropią informacyjną) rozkładu
a posteriori odzwierciedla epistemiczną (redukowalną
przez więcej danych) [17, 47] niepewność naszej wiedzy
o liczbie czołgów.

Uwaga o „niepewności”. Źródłem niepewności zawar-
tej w rozkładzie a posteriori jest brak pełnych danych:
nie udało się zdobyć wszystkich wrażych czołgów, aby
mieć pewność, co do ich liczby3. W praktyce dodatko-
wym źródłem niepewności jest możliwa nieadekwatność
modelu zdobywania wrażych czołgów (założenie prób-
kowania z płaskiego rozkładu) we wzorze (6). Innymi
słowy, w opisie procesu zdobywania wrażych czołgów
mogłoby zachodzić odchylenie od modelu próbkowania
z płaskiego rozkładu. W naszej analizie pomijamy taką
możliwość.

Streszczenie opisu rozkładu a posteriori.Możemy stre-
ścić naszą wiedzę zawartą w rozkładzie a posteriori po-
dając punktową estymatę i mały zbiór liczb, dla któ-
rych prawdopodobieństwo jest największe – wiarygodny
zbiór, w którym zapewne znajduje się rzeczywista liczba
czołgów4. Pożyteczną punktową estymatą jest mediana
rozkładu a posteriori; z definicji jest to wartość, dla której
prawdopodobieństwo, że n jest większe lub równe me-
dianie, wynosi 1

2 . Właściwy wiarygodny podzbiór liczby
wrażych czołgów to podzbiór a [26].

Ha = {n′ ∶ πa prosteriori(N = n′ ∣ M(k) = m(k)) ⩾ πa},
(14)

gdzie πa to największe n spełniające

πa prosteriori(N ∈ Ha ∣ M(k) = m(k)) ⩾ 1 − a. (15)

Innymi słowy, a, będący podzbioremHa , to najmniejszy
zbiór, który zawiera część (1 − a) rozkładu a posteriori
dla takich n, że każde z nich występuje z większym praw-
dopodobieństwem niż dowolne n spoza tego zbioru.

Wnioskowanie na podstawie rozkładu a posteriori. Po-
sługując się rozkładem a posteriorimożemy wyznaczyć
dowolny zbiór n spełniających zadane warunki; np. praw-

3. Na pewno k < n, jeżeli są luki pomiędzy obserwowanymi nume-
rami seryjnymi (s1 , . . . , sk). Nawet gdy nie ma luk w (s1 , . . . , sk) ,
to nie możemy być pewni, że zdobyliśmy wraży czołg o największym
numerze seryjnym.
4. przy naszych założeniach o funkcji wiarygodności i rozkładzie
a priori

dopodobieństwo tego, że liczba wrogich czołgów jest
większa od jakiegoś n′ wynosi

πa prosteriori(N = n′ ∣ M(k) = m(k))

=
∞

∑
n=n′+1

πa prosteriori(N = n ∣ M(k) = m(k)). (16)

Przykład

Poniższym przykładem ilustrujemy podejście bayesow-
skie do PNC.

Rozkład prawdopodobieństwa a priori w zależności
odN .Załóżmy, żemamykres górny nmax możliwej liczby
wrażych czołgów na podstawie np. dostaw pewnych su-
rowców koniecznych do produkcji czołgów, a poza tym
żadnych innych informacji. Możemy wtedy wybrać roz-
myty rozkład prawdopodobieństwa a priori – rozkład
płaski

πa priori(N = n) =
1

nmax + 1
I{0,. . . ,nmax}(n). (17)

Ten rozkład prawdopodobieństwa a prioriwyraża fakt, że
przy braku jakichkolwiek danych (s1 , . . . , sk) (tzn. żad-
nych numerów seryjnych ani nawet liczby k), sądzimy,
że całkowita liczba wrażych czołgów N może przyjąć do-
wolną wartość ze zbioru (0, . . . , nmax) z takim samym
prawdopodobieństwem. Dla ustalenia uwagi załóżmy, że
nmax = 35. Na rysunku 2(a) widzimy πa priori(N = n).

Dane (s1 , . . . , sk) i funkcja wiarygodności. Załóżmy te-
raz, że zdobyliśmy k=3 czołgi (rys. 2(b)) z numerami
seryjnymi s(3) = (15, 14, 3). Maksymalny numer se-
ryjny to m(3) = 15. Funkcja wiarygodności ze wzoru
(10) πwiarygodność(M(3) = 15 ∣ N = n) pokazana jest
na rysunku 2(c). Zauważmy, że funkcja wiarygodności
osiąga maksimum dla n = m(3) = 15, a potem maleje
jednostajnie.

Rozkład prawdopodobieństwa a posteriori w zależno-
ści od N . Uwzględniając rozkład a priori (17), ze wzoru
(13) otrzymujemy

πa prosteriori(N = n ∣ M(k) = m(k))

=
(n)−1k
∑nmax

n′=m(k)
I
{m(k) ,m(k)+1,. . . ,nmax

(n). (18)

Na rysunku 2(d) pokazany jest rozkład prawdopodo-
bieństwa a posteriori dla danych s(3) z rysunku 2(b) i roz-
kład prawdopodobieństwa a priori opisany wzorem (17)
(nmax = 35).
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Rys. 2. Podejście bayesowskie do PNC. (a) Rozkład prawdopodobieństwa a priori. (b) Dane s(3) z maksymalnym zaobserwowanym numerem seryjnym
m(3)=15. (c) Funkcja wiarygodności dla danych s(3). (d) Rozkład prawdopodobieństwa a posteriori;H0.2 jest wyróżnione kolorem amediana – pionową
linią przerywaną.
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Rys. 3. Czułość rozkładu a posteriori na zmiany kresu górnego nmax uży-
tego w rozkładzie a priori.

Podsumowanie opisu rozkładu a posteriori. Rozkład
a posteriori jako funkcja N ma medianę 19 i wiarygodny
podzbiórH0.2 = {15, . . . , 25} wyróżniony kolorem na
rysunku 2(d); dane te zostały wygenerowane kompute-
rowo dla liczby czołgów n = 20, co uzasadnia skalę użytą
na rysunku 2(b).

Wnioskowanie na podstawie rozkładu a posteriori. Za-
łóżmy, że strategia Aliantów musiałaby ulec zmianie,
gdyby liczba wrażych czołgów przekroczyła 30. Z roz-
kładu a posteriori (N) obliczamy, że πa prosteriori(N >
30 ∣ M(3) = 15) ≈ 0,066.

Czułość rozkładu a posteriori na zmiany w rozkładzie
a priori. Skoro przy konstruowaniu rozkładu a priori
odgrywa rolę czynnik subiektywny, jest dobrą praktyką
sprawdzić czułość rozkładu a posteriori na zmiany w roz-
kładzie a priori [46]. Na rysunku 3 widzimy, jak zmienia
się rozkład a posteriori, gdy zmieniamy górny kres liczby
wrażych czołgów nmax, którego używamy we wzorze (17).
Na przykład, gdy zmienimy na nmax = 75, to wiarygodny
podzbiór zwiększa się doH0.2 = {15, . . . , 29}.

Efekt zdobycia większej liczby wrogich czołgów. Za-
łóżmy, że zdobyliśmy dodatkowych 9 czołgów i pow-
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Rys. 4. Rozkład a posteriori po zdobyciu większej liczby wrażych czoł-
gów. (a) Zdobyliśmy dodatkowych 9 czołgów. (b) Zaktualizowany rozkład
a posteriori jako funkcja N .

tórzmy analizę bayesowską. Na rysunku 4 pokazany jest
zaktualizowany rozkład a posteriori.Wiarygodny pod-
zbiór H0.2 zmniejsza się znacznie do {19, 20}. Widać,
jak więcej danych (większa liczba zdobycznych czołgów)
ogólnie zmniejsza naszą niepewność oceny liczby wra-
żych czołgów.

Badania zachowania rozkładu a posteriori przy zmianie
znanej liczby wrażych czołgów, za pomocą symulacji
komputerowych
Badamy tu, jak średnio symulowane wyniki zdobywania
wrogich czołgów, przy założeniu ustalonej ich liczy, poka-
zują zależność prawdopodobieństwa a posteriori liczby
czołgów πa prosteriori(N = n ∣ S(k) = s(k)) od liczby k
zdobycznych czołgów i od maksimum nmax w postulo-
wanym płaskim rozkładzie a priori.

Dla zadanego k i nmax wykonujemy 50 000 symula-
cji. W każdej wybieramy losowo k wrażych czołgów ze
zbioru n = 20, obliczamy prawdopodobieństwa a poste-
riori liczby czołgów πa prosteriori(N = n ∣ S(k) = s(k));
następnie obliczamy medianę i wiarygodny podzbiór
Ha(a = 0.2). Na rysunku 5 widzimy w pierwszej kolum-
nie liczbę zdobycznych czołgów, w pierwszym wierszu
rozkłady a priori; dalej mamy tabelę 3×3 wykresów: roz-
kładu a posteriori, mediany i wiarygodnego podzbioru
dla (k, nmax) ∈ {3.6, 9} × {25, 50, 100}. W miarę wzro-
stu k, wiarygodny podzbiórHa staje się mniej czuły na
nmax, gdyż dane zaczynają dominować nad rozkładem
a priori. Zbiór Ha staje się coraz mniej liczny, jako że
niepewność zmniejsza się wraz ze wzrostem liczebności
próbki. Ze wzrostem nmax, Ha zawiera coraz to więk-
sze wartości n (szacowane liczby wrogich czołgów). Me-
diana uzyskanych w symulacji median rozkładów a po-
steriori pokrywa się z prawdziwą liczbą czołgów = 20
dla nmax = 25 lub k = 9. Dla wartości k ∈ {3, 6} większe
wartości nmax przesuwają medianę powyżej prawdziwej
liczby czołgów.

Dyskusja

Błąd selekcji. Formułując podręcznikowo PNC przyjmu-
jemy mocne założenie, które pozwala estymować liczbę
wrażych czołgów na podstawie losowej próbki nume-
rów seryjnych na nich wybitych, tj. postulujemy, że nu-
mery seryjne są wybrane ze zbioru liczb (1, 2, . . .) i że
każda liczba jest równie prawdopodobna (rozkład pła-
ski); Goodman pokazał w [22] test na tę hipotezę. Intere-
sującąwariacją na temat PNCmogłoby byćmodelowanie
innych rozkładów prawdopodobieństwa zaobserwowa-
nia danego numeru seryjnego. Na przykład moglibyśmy
uwzględniać fakt, że starsze czołgi, z mniejszymi nume-
rami seryjnymi, mogły być wprowadzone do walki wcze-
śniej. To mogłoby spowodować, że starsze wraże czołgi
byłyby trudniejsze do zdobycia niż te nowsze, jako że
późniejsze fronty byłymniej ufortyfikowane. Innymprzy-
kładem błędu selekcji mogłoby być to, że numery seryjne
grupują się w grupy blisko leżących liczb.

PNC w innych kontekstach. Bayesowskie podejście
użyte do analizy PNC można zastosować (być może
z jakimiś modyfikacjami) w innych sytuacjach, gdy
potrzebujemy oszacowania wielkości jakiegoś innego
skończonego zbioru [9], np. liczby taksówek w mieście
[19, 23], samochodów na torze wyścigowym [48], ra-
chunków w banku [25], mebli zakupionych przez uni-
wersytet [22], operacji na lotnisku [34], rozpraw w sądzie
[50] lub sprzętu elektronicznego wyprodukowanego w fa-
bryce [2]. W ten sam sposób możemy szacować: liczbę
tajnych dokumentów rządowych, które wypłynęły na
jaw [18], czas potrzebny do zakończenia projektu [16],
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Rys. 5. Średni wiarygodny podzbiór i mediana mediany rozkładu a posteriori przy stałej liczbie czołgów. Wiersze: różne liczby k zdobycznych czołgów
(lewa część). Kolumny: różne założenia a priori o górnym kresie możliwej liczby czołgów nmax dla rozkładu płaskiego (góra). Dla każdej pary (k, nmax)
wykres pokazuje prawdopodobieństwo a posteriori liczby czołgów. Pionowe linie przerywane wskazują medianę, a czerwona strzałka – rzeczywistą liczbę
równą 20.

okres opisu ekstremalnych zjawisk w przeszłości takich
jak powodzie [39], długość krótkich tandemowych po-
wtórzeń allelu (allel to jedna z wersji genu – przyp.
red.) [51], rozmiar sieci społecznych w Internecie [28],
czas życia kwiatu [38] lub czas trwania jakiegoś ga-
tunku [42]. Dodatkowo w badaniach ekologicznych
obrączkowanie i odławianie pozwala na ocenę liczeb-
ności zwierząt [8, 36]. Wszystko to jest spokrewnione
z PNC.

Praktyka wybijania kolejnych numerów na sprzęcie
wojskowym. W Niemczech wprowadzono praktykę
oznaczania sprzętu wojskowego numerami seryjnymi
i kodami pozwalającymi zidentyfikować producenta.
Jednak użycie kolejnych numerów seryjnych zostało
wykorzystane przez Aliantów do szacowania tempa
produkcji uzbrojenia w III Rzeszy. Aby zmniejszyć za-
grożenie szacowania produkcji analizą numerów se-
ryjnych, przy zachowaniu zalet możliwości identyfi-

kacji producenta, można zastosować szyfrowanie [14]
lub konfundowanie przeciwnika metodą zwaną z ang.
chaffing [40].
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Dostęp do danych i kodu źródłowego

Program w języku programowania Julia [5] pozwala od-
tworzyć wszystkie nasze wyniki (z grafiką wykonanąMa-
kie.jl [12]) i jest dostępny na Github https://www.github.
com/SimonEnsemble/the_German_tank_problem
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